Publications
You can also find my list of publications on NASA/ADS
75 papers (6915 citations): 12 first-author (899 citations), 14 advised student-led papers
Lead/First Author
[12] Agazie et al. 2023. 'The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background'
ApJ Letters, 952, 2. 10.3847/2041-8213/ace18b[11] Kelley, D'Orazio, & Di Stefano 2021. 'Gravitational self-lensing in populations of massive black hole binaries'
MNRAS, 508, 2. 10.1093/mnras/stab2776[10] Kelley 2021. 'kalepy: a Python package for kernel density estimation, sampling and plotting'
The Journal of Open Source Software, 6, 57. 10.21105/joss.02784[9] Kelley 2021. 'Basic considerations for the observability of kinematically offset binary AGN'
MNRAS, 500, 3. 10.1093/mnras/staa3219[8] Kelley, Haiman, Sesana, & Hernquist 2019. 'Massive BH binaries as periodically variable AGN'
MNRAS, 485, 2. 10.1093/mnras/stz150[7] Kelley et al. 2019. 'Multi-Messenger Astrophysics With Pulsar Timing Arrays'
BAAS, 51, 3. 10.48550/arXiv.1903.07644[6] Kelley et al. 2018. 'Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays'
MNRAS, 477, 1. 10.1093/mnras/sty689[5] Kelley et al. 2017. 'The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays'
MNRAS, 471, 4. 10.1093/mnras/stx1638[4] Kelley, Blecha, & Hernquist 2017. 'Massive black hole binary mergers in dynamical galactic environments'
MNRAS, 464, 3. 10.1093/mnras/stw2452[3] Kelley, Tchekhovskoy, & Narayan 2014. 'Tidal disruption and magnetic flux capture: powering a jet from a quiescent black hole'
MNRAS, 445, 4. 10.1093/mnras/stu2041[2] Kelley, Mandel, & Ramirez-Ruiz 2013. 'Electromagnetic transients as triggers in searches for gravitational waves from compact binary mergers'
PRD, 87, 12. 10.1103/PhysRevD.87.123004[1] Kelley et al. 2010. 'The Distribution of Coalescing Compact Binaries in the Local Universe: Prospects for Gravitational-wave Observations'
ApJ Letters, 725, 1. 10.1088/2041-8205/725/1/L91
Student Led
Papers as supervisor or co-supervisor.
[14] Cella, Taylor, & Kelley 2024. 'Host Galaxy Demographics Of Individually Detectable Supermassive Black-hole Binaries with Pulsar Timing Arrays'
arXiv e-prints, submitted. 10.48550/arXiv.2407.01659[13] Gardiner, Kelley, Lemke, & Mitridate 2024. 'Beyond the Background: Gravitational-wave Anisotropy and Continuous Waves from Supermassive Black Hole Binaries'
ApJ, 965, 2. 10.3847/1538-4357/ad2be8[12] Siwek, Kelley, & Hernquist 2024. 'Signatures of Circumbinary Disk Dynamics in Multi-Messenger Population Studies of Massive Black Hole Binaries'
arXiv e-prints, submitted. 10.48550/arXiv.2403.08871[11] Sayeb, Blecha, & Kelley 2024. 'MBH binary intruders: triple systems from cosmological simulations'
MNRAS, 527, 3. 10.1093/mnras/stad3637[10] Ma, Hopkins, Kelley, & Faucher-Giguère 2023. 'A new discrete dynamical friction estimator based on N-body simulations'
MNRAS, 519, 4. 10.1093/mnras/stad036[9] Bécsy et al. 2023. 'How to Detect an Astrophysical Nanohertz Gravitational Wave Background'
ApJ, 959, 1. 10.3847/1538-4357/ad09e4[8] Tillman et al. 2022. 'Running late: testing delayed supermassive black hole growth models against the quasar luminosity function'
MNRAS, 511, 4. 10.1093/mnras/stac398[7] Sivasankaran et al. 2022. 'Simulations of black hole fueling in isolated and merging galaxies with an explicit, multiphase ISM'
MNRAS, 517, 4. 10.1093/mnras/stac2759[6] Bécsy, Cornish, & Kelley 2022. 'Exploring Realistic Nanohertz Gravitational-wave Backgrounds'
ApJ, 941, 2. 10.3847/1538-4357/aca1b2[5] Pol et al. 2021. 'Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection'
ApJ Letters, 911, 2. 10.3847/2041-8213/abf2c9[4] Sayeb et al. 2021. 'Massive black hole binary inspiral and spin evolution in a cosmological framework'
MNRAS, 501, 2. 10.1093/mnras/staa3826[3] Zevin et al. 2020. 'Forward Modeling of Double Neutron Stars: Insights from Highly Offset Short Gamma-Ray Bursts'
ApJ, 904, 2. 10.3847/1538-4357/abc266[2] Siwek, Kelley, & Hernquist 2020. 'The effect of differential accretion on the gravitational wave background and the present-day MBH binary population'
MNRAS, 498, 1. 10.1093/mnras/staa2361[1] Katz et al. 2020. 'Probing massive black hole binary populations with LISA'
MNRAS, 491, 2. 10.1093/mnras/stz3102
Additional Works
2024
[49] Bhowmick et al. 2024. 'Introducing the BRAHMA simulation suite: signatures of low-mass black hole seeding models in cosmological simulations'
MNRAS, 531, 4. 10.1093/mnras/stae1386[48] Bhowmick et al. 2024. 'Growth of high redshift supermassive black holes from heavy seeds in the BRAHMA cosmological simulations: Implications of overmassive black holes'
arXiv e-prints, submitted. 10.48550/arXiv.2406.14658[47] Zwick et al. 2024. 'Bridging the micro-Hz gravitational wave gap via Doppler tracking with the Uranus Orbiter and Probe Mission: Massive black hole binaries, early universe signals and ultra-light dark matter'
arXiv e-prints, submitted. 10.48550/arXiv.2406.02306[46] Johnson et al. 2024. 'NANOGrav 15-year gravitational-wave background methods'
PRD, 109, 10. 10.1103/PhysRevD.109.103012[45] Agazie et al. 2024. 'Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background'
ApJ, 966, 1. 10.3847/1538-4357/ad36be[44] Agazie et al. 2024. 'The NANOGrav 15 yr Data Set: Looking for Signs of Discreteness in the Gravitational-wave Background'
arXiv e-prints, submitted. 10.48550/arXiv.2404.07020[43] Bhowmick et al. 2024. 'Representing low-mass black hole seeds in cosmological simulations: A new sub-grid stochastic seed model'
MNRAS, 529, 4. 10.1093/mnras/stae780[42] Agazie et al. 2024. 'The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background'
ApJ Letters, 964, 1. 10.3847/2041-8213/ad2a51[41] Agazie et al. 2024. 'The NANOGrav 12.5 yr Data Set: A Computationally Efficient Eccentric Binary Search Pipeline and Constraints on an Eccentric Supermassive Binary Candidate in 3C 66B'
ApJ, 963, 2. 10.3847/1538-4357/ad1f61[40] Agazie et al. 2024. 'The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory'
ApJ, 963, 1. 10.3847/1538-4357/ad0726[39] Sivasankaran et al. 2024. 'AGN feedback in isolated galaxies with a SMUGGLE multiphase ISM'
arXiv e-prints, submitted. 10.48550/arXiv.2402.15240
2023
[38] Arzoumanian et al. 2023. 'The NANOGrav 12.5 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries'
ApJ Letters, 951, 2. 10.3847/2041-8213/acdbc7[37] Agazie et al. 2023. 'The NANOGrav 12.5-year Data Set: Search for Gravitational Wave Memory'
arXiv e-prints, submitted. 10.48550/arXiv.2307.13797[36] Agazie et al. 2023. 'The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries'
ApJ Letters, 951, 2. 10.3847/2041-8213/ace18a[35] Afzal et al. 2023. 'The NANOGrav 15 yr Data Set: Search for Signals from New Physics'
ApJ Letters, 951, 1. 10.3847/2041-8213/acdc91[34] Agazie et al. 2023. 'The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget'
ApJ Letters, 951, 1. 10.3847/2041-8213/acda88[33] Agazie et al. 2023. 'The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars'
ApJ Letters, 951, 1. 10.3847/2041-8213/acda9a[32] Agazie et al. 2023. 'The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background'
ApJ Letters, 951, 1. 10.3847/2041-8213/acdac6[31] Falxa et al. 2023. 'Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array'
MNRAS, 521, 4. 10.1093/mnras/stad812[30] Bécsy et al. 2023. 'How to Detect an Astrophysical Nanohertz Gravitational Wave Background'
ApJ, 959, 1. 10.3847/1538-4357/ad09e4[29] Agazie et al. 2023. 'The NANOGrav 15 yr Data Set: Search for Anisotropy in the Gravitational-wave Background'
ApJ Letters, 956, 1. 10.3847/2041-8213/acf4fd
2022
[28] Antoniadis et al. 2022. 'The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background'
MNRAS, 510, 4. 10.1093/mnras/stab3418[27] Bhowmick et al. 2022. 'Impact of gas spin and Lyman-Werner flux on black hole seed formation in cosmological simulations: implications for direct collapse'
MNRAS, 510, 1. 10.1093/mnras/stab3439[26] Nugent et al. 2022. 'Short GRB Host Galaxies. II. A Legacy Sample of Redshifts, Stellar Population Properties, and Implications for Their Neutron Star Merger Origins'
ApJ, 940, 1. 10.3847/1538-4357/ac91d1[25] Zevin et al. 2022. 'Observational Inference on the Delay Time Distribution of Short Gamma-Ray Bursts'
ApJ Letters, 940, 1. 10.3847/2041-8213/ac91cd[24] Kaiser et al. 2022. 'Disentangling Multiple Stochastic Gravitational Wave Background Sources in PTA Data Sets'
ApJ, 938, 2. 10.3847/1538-4357/ac86cc[23] DeMarchi et al. 2022. 'Radio Analysis of SN2004C Reveals an Unusual CSM Density Profile as a Harbinger of Core Collapse'
ApJ, 938, 1. 10.3847/1538-4357/ac8c26[22] Bhowmick et al. 2022. 'Probing the z ≳ 6 quasars in a universe with IllustrisTNG physics: impact of gas-based black hole seeding models'
MNRAS, 516, 1. 10.1093/mnras/stac2238[21] Bavera et al. 2022. 'Probing the progenitors of spinning binary black-hole mergers with long gamma-ray bursts'
A&A, 657. 10.1051/0004-6361/202141979
2021
[20] Arzoumanian et al. 2021. 'The NANOGrav 11 yr Data Set: Limits on Supermassive Black Hole Binaries in Galaxies within 500 Mpc'
ApJ, 914, 2. 10.3847/1538-4357/abfcd3[19] Arzoumanian et al. 2021. 'The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background'
ApJ Letters, 923, 2. 10.3847/2041-8213/ac401c[18] Arzoumanian et al. 2021. 'Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset'
PR Letters, 127, 25. 10.1103/PhysRevLett.127.251302[17] Ma et al. 2021. 'Seeds don't sink: even massive black hole 'seeds' cannot migrate to galaxy centres efficiently'
MNRAS, 508, 2. 10.1093/mnras/stab2713[16] Bhowmick et al. 2021. 'Impact of gas-based seeding on supermassive black hole populations at z ≥ 7'
MNRAS, 507, 2. 10.1093/mnras/stab2204[15] Alam et al. 2021. 'The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars'
ApJS, 252, 1. 10.3847/1538-4365/abc6a1[14] Alam et al. 2021. 'The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars'
ApJS, 252, 1. 10.3847/1538-4365/abc6a0
2020
[13] Arzoumanian et al. 2020. 'Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays: Application to 3C 66B Using the NANOGrav 11-year Data Set'
ApJ, 900, 2. 10.3847/1538-4357/ababa1[12] Vallisneri et al. 2020. 'Modeling the Uncertainties of Solar System Ephemerides for Robust Gravitational-wave Searches with Pulsar-timing Arrays'
ApJ, 893, 2. 10.3847/1538-4357/ab7b67[11] Hazboun et al. 2020. 'The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics'
ApJ, 890, 2. 10.3847/1538-4357/ab68db[10] Arzoumanian et al. 2020. 'The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background'
ApJ Letters, 905, 2. 10.3847/2041-8213/abd401[9] Aggarwal et al. 2020. 'The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory'
ApJ, 889, 1. 10.3847/1538-4357/ab6083
2019
[8] Aggarwal et al. 2019. 'The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries'
ApJ, 880, 2. 10.3847/1538-4357/ab2236[7] Burke-Spolaor et al. 2019. 'The astrophysics of nanohertz gravitational waves'
A&A Reviews, 27, 1. 10.1007/s00159-019-0115-7[6] Taylor et al. 2019. 'Supermassive Black-hole Demographics &Environments With Pulsar Timing Arrays'
BAAS, 51, 3. 10.48550/arXiv.1903.08183[5] Nelson et al. 2019. 'The IllustrisTNG simulations: public data release'
Computational Astrophysics and Cosmology, 6, 1. 10.1186/s40668-019-0028-x
2018
[4] Sesana, Haiman, Kocsis, & Kelley 2018. 'Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates'
ApJ, 856, 1. 10.3847/1538-4357/aaad0f
2017
[3] Guillochon, Parrent, Kelley, & Margutti 2017. 'An Open Catalog for Supernova Data'
ApJ, 835, 1. 10.3847/1538-4357/835/1/64
2016
[2] Blecha et al. 2016. 'Recoiling black holes: prospects for detection and implications of spin alignment'
MNRAS, 456, 1. 10.1093/mnras/stv2646
2014
[1] Tchekhovskoy, Metzger, Giannios, & Kelley 2014. 'Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event'
MNRAS, 437, 3. 10.1093/mnras/stt2085
updated at 2024-09-14_00:00:12.